DOI: 10.1002/ejic.200700113

Coordinated 1,3-Diyne Diols as Organometallic Building Blocks for Large Macrocycles Containing Oxygen and Unsaturated Donor Units

Louisa J. Hope-Weeks,*[a] Martin J. Mays,[b] and Gregory A. Solan*[c]

Keywords: Macrocycles / Cobalt complexes / Oxygen / Alkynes / Nicholas reaction

The acid-catalysed reaction of $[\{Co_2(CO)_6(\mu-\eta^2-HOCH_2C_2-)\}_2]$ (1a) with a range of alkyl diols has been examined as means of preparing large crown-type macrocycles (up to twenty eightmembered) containing at least one coordinated 1,3-diyne unit, multiple oxygen atoms and a variety of soft donor units. Thus, interaction of **1a** with HOCH₂(CH₂)_nCH₂OH, allows access to η^2 -CH₂C₂C₂CH₂OCH₂(CH₂)_nCH₂O}] (**3a**: n = 2, **3b**: n = 3, **3c**: n = 3= 4) along with the dimeric cyclised species $[{Co_2(CO)_6}_2]$ $\{cyclo-\mu-\eta^2:\mu-\eta^2-CH_2C_2C_2CH_2OCH_2(CH_2)_nCH_2O\}\}_2$ (4a: n=2, **4b**: n = 3, **4c**: n = 4). Introduction of additional oxygen donor atoms into the macrocycle can be achieved by reaction of 1a with the glycols, HO(CH₂CH₂O)_nH, to afford exclusively monomeric $[\{Co_2(CO)_6\}_2\{cyclo-\mu-\eta^2:\mu-\eta^2-CH_2C_2C_2CH_2O(CH_2-\eta^2)\}]$ CH_2O_n (5a: n = 3, 5b: n = 4). On the other hand, treatment of **1a** with the 1,3-diyne-linked alkyl diols, $HOCR_2C = CC =$ CCR₂OH, furnishes the more rigid monomeric [{Co₂(CO)₆}₂-

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

Introduction

Recent years have seen a surge of interest in the application of the acid-catalysed Nicholas reaction (both intraand intermolecular)[1] to promote the formation of both carbocyclic and heteroatom-containing medium to large ring systems.[1d,2-6,9-11] This can, in part, be attributed to the connection the resultant materials have to either natural products, [2,4] bio-inorganic hosts, [7] molecular sensors [7] or to nanomaterials.[8] With regard to intermolecular reactions, the reactivity of hexacarbonyldicobalt-coordinated monoyne diols, [$\{Co_2(CO)_6(\mu-\eta^2-HOCR_2C\equiv CR_2OH)\}$] (R = H, hydrocarbyl), towards a range of nucleophiles has been extensively investigated by Went and co-workers and allows access to a rich variety of medium to large macrocycles containing an assortment of donor functionalities.^[3] On the other hand, the use of the more extended bis(hexacarbonyldicobalt)-coordinated diyne diols (and ethers) has received less attention with a few reports focusing on the reactivity of organo-linked diyne derivatives. [4–6] In our programme, we have found that the less flexible and conjugated 1,3-diyne diol, [$\{Co_2(CO)_6(\mu-\eta^2-HOCH_2C_2-)\}_2$] (1a, Figure 1), can also serve as a pre-organised building block for the assembly of ring systems including large thio- and mixed S,O-macrocycles. [9,10] Significantly, the use of the more bulky [$\{Co_2(CO)_6(\mu-\eta^2-HOCMe_2C_2-)\}_2$] (1b) inhibits an intermolecular reaction and instead generates a strained seven-membered ring carbocycle via an intramolecular pathway. [11]

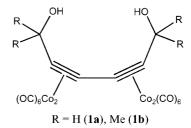


Figure 1. Bis[Co₂(CO)₆]-coordinated diyne-diol 1.

As an extension to our work in this area, we have been interested in employing the Nicholas reaction to generate crown-type macrocycles that can additionally incorporate soft donor groups such as 1,3-diynes, alkynes and aryls groups. To this end we have targeted a family of alkyl diols,

[[]a] Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA

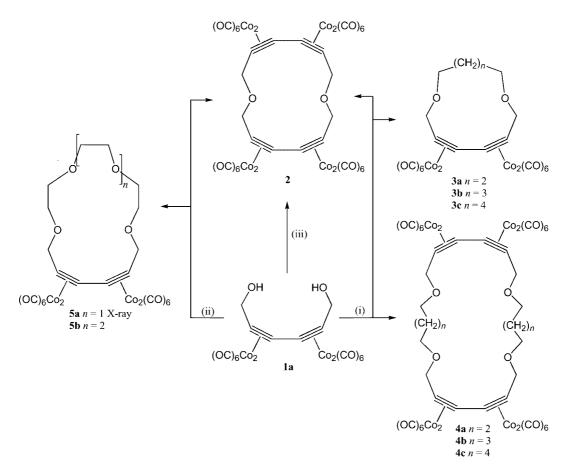
[[]b] Department of Chemistry,

Lensfield Road, Cambridge CB2 1EW, UK

[[]c] Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK E-mail: gas8@leicester.ac.uk

 $HOCR_2$ -linker- CR_2OH (linker = alkyl, glycol, 1,3-diynyl, alkynyl, aryl; R = H, Me), as potential nucleophiles for the acid-catalysed reaction with the less sterically encumbered 1a. Herein, we report full details of our findings from this study.

Results and Discussion


1. Reactions of 1a with Alkyl Diols

The reaction of $[\{Co_2(CO)_6(\mu-\eta^2-HOCH_2C_2-)\}_2]$ (1a) with one equivalent of $HOCH_2(CH_2)_nCH_2OH$ (n=2-4) in dichloromethane at -78 °C in the presence of $HBF_4\cdot OEt_2$ gave the self-dimerised product $[\{Co_2(CO)_6\}_2\{cyclo-\mu-\eta^2:\mu-\eta^2-CH_2C_2C_2CH_2O\}]_2$ (2), the monomeric cyclised complexes $[\{Co_2(CO)_6\}_2\{cyclo-\mu-\eta^2:\mu-\eta^2-CH_2C_2C_2CH_2OCH_2-(CH_2)_nCH_2O\}]$ (3a: n=2, 3b: n=3, 3c: n=4) and the dimeric cyclised species $[\{Co_2(CO)_6\}_2\{cyclo-\mu-\eta^2:\mu-\eta^2-CH_2C_2C_2CH_2OCH_2-(CH_2)_nCH_2O\}]_2$ (4a: n=2, 4b: n=3, 4c: n=4) in high combined yield (Scheme 1). Complex 2 can also be obtained by stirring 1a in dichloromethane in the presence of $HBF_4\cdot OEt_2$. The complexes 2–4 have been characterised by FAB mass spectrometry and by 1H and ^{13}C NMR and IR spectroscopy (see Table 1 and experimental section). Satisfactory microanalytical data were obtained

for all complexes. In addition, the complexes 2 and 3a have been the subject of single-crystal X-ray diffraction studies.

Suitable crystals of 2 and 3a for the X-ray determination were grown from dichloromethane by slow diffusion of hexane at 0 °C. Perspective views of 2 and 3a are depicted in Figures 2 and 3; selected bond lengths and angles are listed in Tables 2 and 3. The molecular structure of 2 contains a crystallographic centre of symmetry which lies at the midpoint of the C(18)-C(13A) and C(13)-C(18A) alkynic bonds. The structure itself is based on a fourteen-membered 1,8-dioxacyclotetradeca-3,5,10,12-tetrayne ring with the two diyne units each coordinated by two Co₂(CO)₆ units in an $\eta^2:\eta^2$ fashion. The Co₂C₂ cores adopt the expected tetrahedral arrangements with the bond parameters falling within the normal range.[12-14] Within each coordinated diyne unit the two Co₂C₂ units are disposed in a pseudo cis configuration [torsion angle C(16)–C(17)–C(18)–C(13A) 36.5°] with the $C = C - CH_2$ bend-back angles^[15] [C(15)-C(16)–C(17) 141.5(2), C(18A)–C(13)–C(14) 144.5(2)°] similar to those observed in related acyclic cobalt-alkyne complexes; [12,13] the mean $C = C - CH_2$ angle is 141.31°. [16]

Complex 3a crystallises with two discrete independent molecules (A and B in Table 3) within its asymmetric unit. The main difference between the two molecules is the presence of some disorder within the O(16)–C(17)–C(18)–C(19)

Scheme 1. Reagents and conditions; (i) $HOCH_2(CH_2)_nCH_2OH$, $HBF_4\cdot OEt_2$ (cat.), -78 °C, CH_2Cl_2 ; (ii) $HO(CH_2CH_2O)_nH$, $HBF_4\cdot OEt_2$ (cat.), -78 °C, CH_2Cl_2 ; (iii) $HBF_4\cdot OEt_2$ (cat.), -78 °C, CH_2Cl_2 ; (iii) $HBF_4\cdot OEt_2$ (cat.), -78 °C, CH_2Cl_2 .

Table 1. Spectroscopic and analytical data for the new complexes 2–9.

	$v(CO) [cm^{-1}]^{[a]}$	1 H NMR $[\delta]^{[b]}$	FAB mass spectrum	Microanalysis [9	%] ^[c]
				С	Н
2	2025 (s), 2062 (s),	4.93 (s, 8 H, CCH ₂ O)	M^+ (1328), $M^+ - nCO$ ($n = 1-24$)	32.65 (32.56)	0.71 (0.61)
	2083 (s), 2100 (m)	· · · · · · · · · · · · · · · · · · ·			
3a	2027 (s), 2063 (vs),	4.67 (s, 4 H, CCH ₂ O), 3.57 [br. s, 4 H,	M^+ (736), $M^+ - nCO$ ($n = 1-12$)	36.02 (35.90)	1.66 (1.64)
	2083 (s), 2101 (m)	$OCH_2(CH_2)_2CH_2O$], 1.67 [br. s, 4 H,			
		$OCH_2(CH_2)_2CH_2O$			
3b	2024 (s), 2059 (vs),	4.68 (s, 4 H, CCH ₂ O), 3.48 [br. s, 4 H,	M^+ (750), $M^+ - nCO$ ($n = 1-12$)	37.01 (36.81)	1.91 (1.87)
	2082 (s), 2100 (m)	$OCH_2(CH_2)_3CH_2O$], 1.5–1.3 [m, 6 H,			
_	,	$OCH_2(CH_2)_3CH_2O]$			
3c	2023 (s), 2058 (vs),	4.57 (s, 4 H, CCH ₂ O), 3.57 [m, 4 H,	M^+ (764), $M^+ - nCO$ ($n = 1-12$)	37.24 (37.73)	2.14 (2.11)
	2082 (s), 2102 (m)	$OCH_2(CH_2)_4CH_2O$], 1.5–1.3 [m, 8 H,			
	2024 () 2050 ()	$OCH_2(CH_2)_4CH_2O$) (1470)) (1 00 (1 00)	26.00 (25.00)	1.76 (1.64)
4a	2024 (s), 2059 (vs),	4.66 (s, 8 H, CCH ₂ O), 3.73 [br. s, 8 H,	M^+ (1472), $M^+ - nCO$ ($n = 1-24$)	36.08 (35.90)	1.76 (1.64)
	2081 (s), 2101 (m)	$OCH_2(CH_2)_2CH_2O]$, 1.70 [br. s, 8 H,			
4L	2025 (a) 2050 (a)	$OCH_2(CH_2)_2CH_2O$	M^{+} (1500) M^{+} $= CO (= 1.24)$	27.05 (26.91)	2.01 (1.97)
4b	2025 (s), 2059 (vs), 2082 (m), 2101 (m)	4.67 (s, 8 H, CCH ₂ O), 3.60 [m, 8 H,	M^+ (1500), $M^+ - nCO$ ($n = 1-24$)	37.05 (36.81)	2.01 (1.87)
	2082 (III), 2101 (III)	OCH ₂ (CH ₂) ₃ CH ₂ O], 1.6–1.4 [m, 12 H, OCH ₂ (CH ₂) ₃ CH ₂ O]			
4 c	2025 (s), 2058 (vs),	4.59 (s, 8 H, CCH ₂ O), 3.51 [m, 8 H,	M^+ (1528), $M^+ - nCO$ ($n = 1-24$)	36.92 (37.73)	2.05 (2.11)
70	2082 (s), 2101 (m)	OCH ₂ CH ₂ (CH ₂) ₂ CH ₂ CH ₂ O], 1.55 [br. s, 8 H,	(1320), 101 - neo (n - 1-24)	30.72 (37.73)	2.03 (2.11)
	2002 (3), 2101 (111)	CH ₂ CH ₂ (CH ₂) ₂ CH ₂ CH ₂ O ₁ , 1.35 [bl. s, 8 H,			
		$CH_2CH_2(CH_2)_2CH_2CH_2O$, 1.25 [61: 3, 6 H, $CH_2CH_2(CH_2)_2CH_2CH_2O$]			
5a	2026 (s), 2062 (vs),	4.82 (s, 4 H, CCH ₂ O), 3.8–3.5 [m, 12 H,	M^+ (796), $M^+ - nCO$ ($n = 1-12$)	36.22 (36.21)	1.96 (2.03)
	2084 (s), 2102 (m)	O(CH ₂ CH ₂ O) ₃]	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(* * * * * * * * * * * * * * * * * * *	
5b	2025 (s), 2059 (vs),	4.77 (s, 4 H, CCH ₂ O), 3.8–3.6 [m, 16 H,	M^+ (840), $M^+ - nCO$ ($n = 1-12$)	37.34 (37.17)	2.22 (2.40)
	2082 (s), 2101 (m)	O(CH ₂ CH ₂ O) ₄]		, ,	` /
6a	2027 (s), 2059 (vs),	4.95 (s, 4 H, CCH ₂ O), 4.33 (s, 4 H, CCH ₂ O)	M^+ (756), $M^+ - nCO$ ($n = 1-12$)	38.41 (38.13)	1.31 (1.07)
	2084 (s), 2102 (m)				
6b	2030 (s), 2057 (vs),	4.96 (s, 4 H, CCH ₂ O), 1.41 (s, 12 H, CH ₃)	M^+ (812), $M^+ - nCO$ ($n = 1-12$)	_	_
	2084 (s), 2093 (w),				
	2102 (w)				
7a	2027 (s), 2058 (vs),	4.74 (s, 8 H, CCH ₂ O), 4.42 (s, 8 H, CCH ₂ O)	M^+ (1512), $M^+ - nCO$ ($n = 1-24$)	38.48 (38.13)	1.01 (1.07)
	2084 (s), 2103 (m)				
7b	2030 (s), 2061 (vs),	4.12 (s, 8 H, CCH ₂ O), 1.23 (s, 24 H, CH ₃)	M^+ (1624), $M^+ - nCO$ ($n = 1-24$)	40.76 (39.93)	1.42 (1.29)
	2083 (s), 2102 (w)	- 40 / 477 GGTT O) 4 - 50 / 477 GGTT O)	351 (4886 351 - 68 (- 4.8)	25.55 (25.00)[4]	4 4 7 (4 9 9) [
8a	2015 (sh), 2031 (m),	5.10 (s, 4 H, CCH ₂ O), 4.79 (s, 4 H, CCH ₂ O),	M^+ (1396), $M^+ - nCO$ ($n = 1-24$)	35.66 (35.89) ^[d]	1.45 (1.33)
	2056 (m), 2065 (vs),	4.39 (s, 4 H, CCH ₂ O)			
OL.	2085 (m), 2102 (m)	7.27 (b 4 H. Db.) 4.06 (c. 4 H. CCH.O)	M+ (1440) M+ CO (- 1 24)	26 12 (26 50)	1 22 (1 11)
8D	2024 (s), 2035 (m),	7.37 (br. s, 4 H, Ph), 4.86 (s, 4 H, CCH ₂ O),	M^+ (1448), $M^+ - nCO$ ($n = 1 - 24$)	36.12 (36.30)	1.22 (1.11)
	2058 (s), 2064 (vs),	4.54 (s, 4 H, CCH ₂ O), 4.09 (s, 4 H, CCH ₂ O)			
O _a	2083 (s), 2101 (m)	4.74 (c. 0 H. CCH O). 4.42 (c. 0 H. CCH O).	$M^{+}(1464)$ M^{+} $nCO(n-1.24)$	26.07.(26.10)	1 22 (1 10)
ya	2029 (s), 2061 (s),	4.74 (s, 8 H, CCH ₂ O), 4.42 (s, 8 H, CCH ₂ O)	M^+ (1464), $M^+ - nCO$ ($n = 1-24$)	36.07 (36.10)	1.22 (1.10)
Ob	2085 (s), 2103 (m)	7.5. 7.2 (m. 8 H. Dh.) 4.50 (c. 8 H. CCH.O.)	M^{+} (1568) M^{+} nCO ($n = 1, 24$)	39.79 (39.83)	1.68 (1.54)
フル	2027 (s), 2059 (vs), 2083 (s), 2102 (w)	7.5–7.3 (m, 8 H, Ph), 4.50 (s, 8 H, CCH ₂ O), 4.48 (s, 8 H, CCH ₂ O)	M^+ (1568), $M^+ - nCO$ ($n = 1-24$)	37.17 (37.03)	1.00 (1.34)
	2003 (S), 2102 (W)	7.70 (5, 6 11, CC11 ₂ O)			

[a] CH₂Cl₂ solution, 0.5 mm NaCl cells. [b] ¹H NMR chemical shifts in ppm relative to SiMe₄ ($\delta = 0.0$ ppm), coupling constants in Hz in CDCl₃ at 293 K. [c] Calculated values shown in parentheses. [d] Calculated values include 0.5 hexane.

section of the ring in molecule A which is absent in B. The molecular structure consists of a twelve-membered 1,6-dioxacyclododeca-8,10-diyne macrocyclic ring with the diyne section coordinated by two Co₂(CO)₆ units and linked at each end by a CH2OCH2CH2CH2CH2OCH2 chain. The Co₂C₂ cores adopt the expected tetrahedral arrangements with the metal-metal bonds of each being located almost perpendicular to the corresponding alkyne vectors and their lengths falling in the expected ranges.[12-14] Inspection of the C≡C-C≡C torsion angle within the coordinated 1,3diyne section of the macrocycle also reveals some differences between the independent molecules [torsion angle C(14)-C(13)-C(24)-C(23) 50.7° (molecule A), 44.2° (molecule B)] with the mean value ca. 11° larger than that in 2. The bend back angles within and between molecules are similar [140.7(3), 140.2(3) (molecule A) vs. 138.6(3), 140.4(4)° (molecule B)] and as with 2 comparable with those found in related non-cyclic 1,3-diyne cobalt carbonyl complexes.[12,13]

The IR spectra of 2-4 reveal terminal carbonyl bands with patterns similar to that for $1a^{[17]}$ and to other bis(hexacarbonyldicobalt)-protected 1,3-diyne complexes.[13] In their FAB mass spectra, molecular ions are clearly visible along with fragmentation peaks corresponding to the loss of carbonyl groups from the corresponding molecular ion. In the ¹H NMR spectra of **2–4**, the protons for the methylene groups adjacent to both an alkynic carbon atom and an oxygen atom are seen as singlets in the range $\delta = 4.57$ – 4.93 while the aliphatic chain CH₂ groups in 3 and 4 are seen more upfield. Due to the high degree of symmetry as

3103

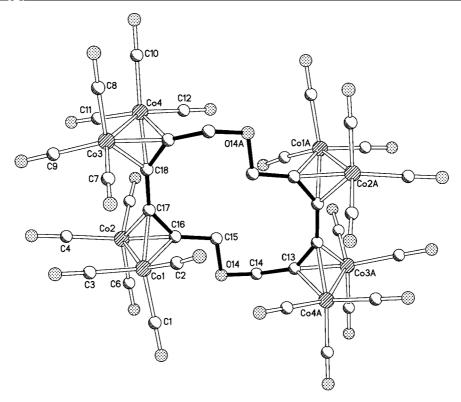


Figure 2. Molecular structure of 2 with partial atom labeling Scheme; all hydrogen atoms have been omitted for clarity.

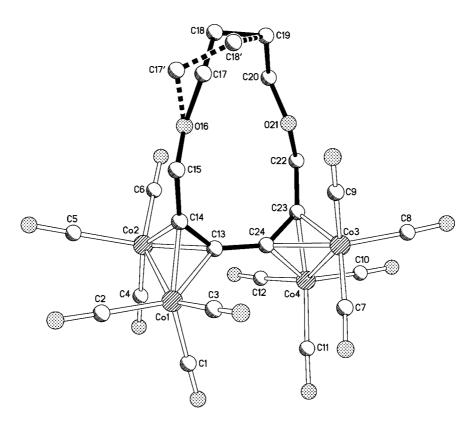


Figure 3. Molecular structure of 3a with partial atom labeling scheme; all hydrogen atoms have been omitted for clarity (the dotted line indicates the disordered moiety).

Table 2. Selected bond lengths [Å] and angles (°) for 2.[a]

Bond lengths			
C(13)-C(14) C(14)-O(14) C(15)-O(14) C(15)-C(16) C(16)-C(17)	1.497(3) 1.426(2) 1.419(2) 1.479(3) 1.363(3)	C(18)–C(13A) Co(1)–Co(2) Co(3)–Co(4) Co–C(carbonyl) C–O(carbonyl)	1.362(3) 2.4700(3) 2.4626(4) 1.787(2)–1.831(2) 1.125(3)–1.140(2)
$\frac{C(17)-C(18)}{\text{Bond angles}}$	1.432(3)	Co-C(alkyne)	1.941(2)–1.980(2)
C(18A)-C(13)-C(14) C(13)-C(14)-O(14) C(14)-O(14)-C(15) O(14)-C(15)-C(16)		C(15)–C(16)–C(17) C(16)–C(17)–C(18) C(17)–C(18)–C(13A)	141.5(2) 143.5(2) 145.4(2)

[a] Atoms with suffix A are generated by symmetry (-x, 1 - y, -z).

Table 3. Selected bond lengths [Å] and angles (°) for 3a.

	Molecule A	Molecule B
Bond lengths		
C(13)–C(14)	1.353(4)	1.350(4)
C(14)-C(15)	1.482(4)	1.484(4)
C(15)–O(16)	1.406(4)	1.427(3)
O(16)-C(17)	1.521(7)	1.433(4)
C(17)-C(18)	1.549(8)	1.499(5)
C(18)-C(19)	1.408(6)	1.535(5)
C(19)-C(20)	1.486(5)	1.489(5)
C(20)-O(21)	1.370(4)	1.414(4)
O(21)-C(22)	1.431(4)	1.415(4)
C(22)-C(23)	1.477(4)	1.479(4)
C(23)–C(24)	1.353(4)	1.352(4)
C(24)-C(13)	1.420(4)	1.426(4)
Co(1)–Co(2)	2.4588(5)	2.4646(5)
Co(3)–Co(4)	2.4717(5)	2.4692(5)
Co-C(carbonyl)	1.787(2)-1.831(2)	1.787(2)-1.831(2)
C-O(carbonyl)	1.125(3)-1.140(2)	1.125(3)–1.140(2)
Co-C(alkyne)	1.941(2)-1.980(2)	1.941(2)-1.980(2)
Bond angles		
C(13)-C(14)-C(15)	140.2(3)	140.4(3)
C(14)-C(15)-O(16)	107.6(2)	108.1(2)
C(15)-O(16)-C(17)	107.9(3)	112.9(2)
O(16)-C(17)-C(18)	104.3(5)	113.3(3)
C(17)-C(18)-C(19)	116.1(5)	115.2(3)
C(18)-C(19)-C(20)	113.6(4)	116.1(3)
C(19)-C(20)-O(21)	109.2(3)	110.1(3)
C(20)-O(21)-C(22)	113.1(3)	112.4(4)
O(21)-C(22)-C(23)	106.7(3)	108.9(2)
C(22)-C(23)-C(24)	140.7(3)	138.6(3)
C(23)-C(24)-C(13)	141.5(3)	141.2(3)

well as the quadrupole broadening due to ⁵⁹Co, the NMR spectroscopic data for monomeric **3** and its respective dimer **4** are virtually indistinguishable.

2. Reaction of 1a with Glycols

With the intent of introducing additional hard oxygen donor functionality into the macrocycle, the reaction of **1a** with two types of glycol was examined. Thus, treatment of **1a** with one equivalent of $HO(CH_2CH_2O)_nH$ (n = 3, 4) in dichloromethane at -78 °C in the presence of $HBF_4 \cdot OEt_2$ gave the monomeric cyclised complexes [$\{Co_2(CO)_6\}_{2-1}^2 + (cyclo-\mu-\eta^2:\mu-\eta^2-CH_2C_2C_2CH_2O(CH_2CH_2O)_n\}$] (**5a**: n = 3, **5b**: n = 4) in high yield (Scheme 1). As with the reactions

of **1a** with HO(CH₂)_nOH (vide supra), **2** was isolated as a minor by-product in each case. Both new complexes have been characterised by mass spectrometry and by ¹H, ¹³C NMR and IR spectroscopy (see Table 1 and Experimental section). Satisfactory microanalytical data were obtained for both **5a** and **5b**. In addition, **5a** has been the subject of a single-crystal X-ray diffraction study.

Single crystals of 5a suitable for the X-ray determination were grown from hexane by slow evaporation at 0 °C. A view of the structure is depicted in Figure 4; selected bond lengths and angles are given in Table 4. The structure consists of a sixteen-membered 1,4,7,10-tetraoxacyclohexadeca-12,14-diyne ring with the two methylene end groups of the coordinated CH₂C≡C-C≡CCH₂ moiety linked by a triethyleneglycol-derived tether. Within the Co₂C₂ tetrahedral cores there are no unusual structural features, with all bond lengths and angles falling in the expected ranges.^[12–14] The relative disposition of the two Co₂C₂ fragments can be described as pseudo cis [torsion angle C(14)-C(15)-C(16)-C(17) 45.6°] while the two CH₂–C \equiv C bend back angles are comparable [C(13)-C(14)-C(15) 142.05(19) vs. C(16)-C(17)–C(18) 140.9(2)°]. An approximation of the cavity size can be made by studying the non-bonding oxygen-oxygen separations [O(13)···O(14) 2.916, O(13)···O(15) 4.730, O(13)···O(16) 5.240, O(14)···O(16) 4.800 Å] which can be compared to the non-bonding O-O separations of 4.362, 3.012 and 2.971 Å in 12-crown-4.^[18]

The 1 H NMR spectra of **5a** and **5b** are similar with the methylene protons on the OCH₂ groups adjacent to the alkynic carbons taking the form of a singlet at ca. 4.80 while the OCH₂CH₂O protons are seen as multiplets in the range $\delta = 3.82-3.56$. The 13 C NMR spectra are also similar but differ with two resonances seen for the methylene carbons

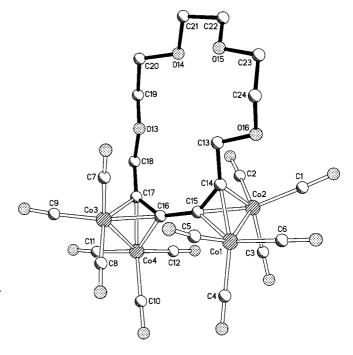


Figure 4. Molecular structure of **5a** with partial atom labeling scheme; all hydrogen atoms have been omitted for clarity.

Table 4. Selected bond lengths [Å] and angles (°) for 5a.

Bond lengths			
C(13)-C(14)	1.480(3)	C(22)-O(15)	1.413(3)
C(14)-C(15)	1.358(3)	O(15)-C(23)	1.415(3)
C(15)-C(16)	1.429(3)	C(23)-C(24)	1.493(3)
C(16)-C(17)	1.352(3)	C(24)-O(16)	1.430(2)
C(17)-C(18)	1.485(3)	O(16)-C(13)	1.421(2)
C(18)-O(13)	1.410(3)	Co(1)-Co(2)	2.4710(4)
O(13)-C(19)	1.424(3)	Co(3)-Co(4)	2.4715(4)
C(19)-C(20)	1.494(3)	Co-C(carbonyl)	1.784(3)-1.828(3)
C(20)-O(14)	1.412(3)	C-O(carbonyl)	1.129(3)-1.141(3)
O(14)-C(21)	1.426(3)	Co-C(alkyne)	1.938(2)-1.976(2)
C(21)-C(22)	1.488(3)		
Bond angles			
C(13)-C(14)-C(15)	142.05(19)	C(20)-O(14)-C(21)	111.76(17)
C(14)-C(15)-C(16)	141.5(2)	O(14)-C(21)-C(22)	107.82(19)
C(15)-C(16)-C(17)	141.9(2)	C(21)-C(22)-O(15)	107.6(2)
C(16)-C(17)-C(18)	140.9(2)	C(22)-O(15)-C(23)	112.92(18)
C(17)-C(18)-O(13)	109.19(18)	O(15)-C(23)-C(24)	109.23(19)
C(18)-O(13)-C(19)	111.21(17)	C(23)-C(24)-O(16)	113.51(19)
O(13)-C(19)-C(20)	109.8(2)	C(24)-O(16)-C(13)	113.91(15)
C(19)-C(20)-O(14)	109.00(19)	O(16)-C(13)-C(14)	108.79(17)

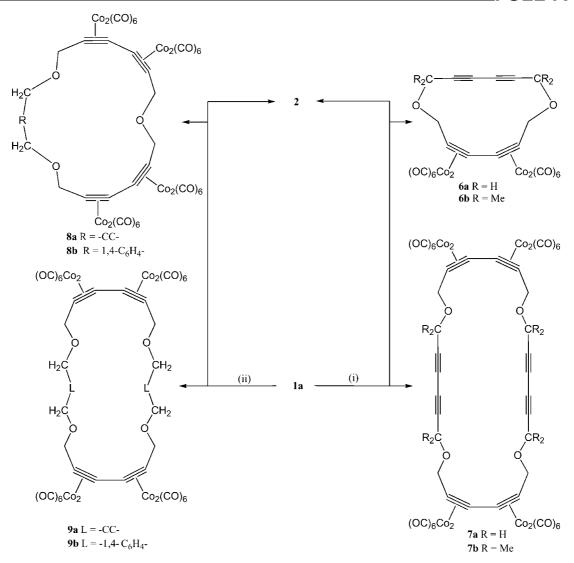
in **5a** while four are present in **5b**. Confirmation of the monomeric nature of **5a** and **5b** is revealed in their FAB mass spectra with molecular ion peaks along with fragmentation peaks corresponding to the loss of carbonyl groups from the parent ion evident.

It is uncertain why an additional dimeric species is not formed in any of the reactions of **1a** with glycols in a manner similar to that seen for the reaction of **1a** with aliphatic diols (vide supra). It would seem likely that the presence of oxygen donors within the glycolic-based nucleophile could lead to a weak Co–O interaction in an intermediate (or transition state) which would favour monomeric ring closure. Indeed, such an Co–O interaction has previously been proposed to explain the high monomer to dimer ratio observed during the reaction of **1a** with dithioethers. [9b]

3. Reaction of 1a with Diynyl-, Alkynyl- or Aryl-Linked Alkyl Diols

In order to introduce a soft donor into the macrocycle we have also targeted the reactions of alkyl diols that contain alkynyl or aryl linking units. Accordingly, the reaction of $\mathbf{1a}$ with one equivalent of the 1,3-diyne-linked alkyl diols, $HOCR_2C \equiv CC \equiv CCR_2OH$, was initially examined and found to furnish, in addition to trace quantities of $\mathbf{2}$, monomeric [$\{Co_2(CO)_6\}_2$ - $\{cyclo-\mu-\eta^2:\mu-\eta^2-CH_2C_2C_2CH_2OCR_2C_2C_2CR_2O\}$] [$\mathbf{6a}: R = H$, $\mathbf{6b}: R = Me$] and dimeric macrocycles [$\{Co_2(CO)_6\}_2$ - $\{cyclo-\mu-\eta^2:\mu-\eta^2-CH_2C_2C_2CH_2OCR_2C_2CR_2O\}$]] [$\mathbf{7a}: R = H$, $\mathbf{7b}: R = Me$] in high combined yield (Scheme 2).

As with 3 and 4, the similarity of the spectroscopic data for monomeric 6 with the corresponding dimeric 7 meant unequivocal identification by NMR and IR spectroscopy proved problematic (see Table 1). Nevertheless, the incorporation of the uncoordinated 1,3-diyne into the macrocycle could be confirmed by the presence of two different types of methylene protons in the ¹H NMR spectra of 6a and 7a, while the equivalent methyl protons in 6b and 7b are seen as singlets (see Table 1). In the FAB mass spectra of 6 and


7, however, the complexes could be readily distinguished, with molecular ion peaks corresponding to monomeric and dimeric species along with fragmentation peaks that match to the loss of twelve or twenty-four successive carbonyl groups, respectively.

In order to identify unambiguously the new complexes the structure of one such complex, **7a**, was determined by a single-crystal X-ray diffraction study. Suitable crystals for the study could be grown from dichloromethane by slow diffusion of hexane at 0 °C. Selected bond lengths and angles are given in Table 5 and a view of the molecular structure is depicted in Figure 5.

The molecular structure of 7a sits on a crystallographic centre of symmetry which lies between the alkynic bonds C(13)–C(14A) and C(13A)–C(14). The structure confirms the molecule is comprised of four Co₂(CO)₆ units and is bridged by a twenty-eight-membered 1,8,15,22-tetraoxacycloicosaocta-3,5,10,12,17,19,24,26-octayne ring. The geometric parameters of the pseudo-tetrahedral Co₂C₂ cores are unexceptional. As expected the bend back angles for the non-coordinated divne are close to one hundred and eighty degrees [C(18)–C(19)–C(20) 177.2(3), C(21)–C(22)–C(23) 173.4°] while the coordinated ones [C(15)-C(16)-C(17)]141.2(2), C(24)–C(13)–C(14A) 138.3(2)°] fall in a range similar to previously reported acyclic cobalt-bound diyne complexes.[12-14] The two uncoordinated diyne chains adopt a parallel relative conformation with the C(22) and C(22A) separation being 3.748 Å. Examination of the coordinated C = C - C = C torsion angles (40.2°) reveals the Co_2C_2 units to be disposed in a pseudo cis configuration.

The reaction of the shorter alkynyl- or aryl-linked alkyl diols, $HOCH_2(L)CH_2OH$ ($L = -C \equiv C_-$, 1,4-C₆H₄) with 1a has also been examined. Thus treatment of 1a with one equivalent of $HOCH_2(L)CH_2OH$ ($L = -C \equiv C_-$, 1,4-C₆H₄), in the presence of $HBF_4 \cdot OEt_2$, affords the unsymmetrical dimeric $[\{Co_2(CO)_6\}_2\{cyclo-\mu-\eta^2:\mu-\eta^2-CH_2C_2C_2CH_2\}_2O-\{OCH_2(L)CH_2O\}]$ [8a: $L = -C \equiv C_-$, 8b: $L = 1,4-C_6H_4$] and symmetrical dimeric species $[\{Co_2(CO)_6\}_2\{cyclo-\mu-\eta^2:\mu-\eta^2-CH_2C_2C_2CH_2OCH_2(L)CH_2O\}]_2$ [9a: $L = -C \equiv C_-$, 9b: $L = 1,4-C_6H_4$] in high combined yields (Scheme 2). Also isolated in trace quantities is the self-dimerised species 2 but there is no evidence for any monomeric species (cf. reactions of 1a with diynyl-linked alkyl diols).

The FAB mass spectra of **8** and **9** give molecular ion peaks along with fragmentation peaks consistent with the proposed dimeric structures (see Table 1). In the IR spectra for **9** four terminal carbonyl bands are seen in a pattern similar to that observed for the other symmetrical monomeric (**3**, **5**, **6**) or dimeric (**2**, **4**, **7**) species prepared in this work. In the case of **8a** and **8b**, however, the terminal carbonyl regions are more complicated with greater than four bands evident and consistent with the dicobalt units now being in non-equivalent environments. The unsymmetrical nature of **8a** and **8b** is further supported by the ¹H NMR spectra which show three singlets for the inequivalent methylene protons, this inequivalence also being reflected in the ¹³C NMR spectra with three singlets observed for the corresponding methylene carbon atoms.

Scheme 2. Reagents and conditions; (i) $HOCR_2C_2C_2CR_2OH$, $HBF_4\cdot OEt_2$ (cat.), -78 °C, CH_2Cl_2 ; (ii) $HOCH_2\cdot L\cdot CH_2OH$, $HBF_4\cdot OEt_2$ (cat.), -78 °C, CH_2Cl_2 .

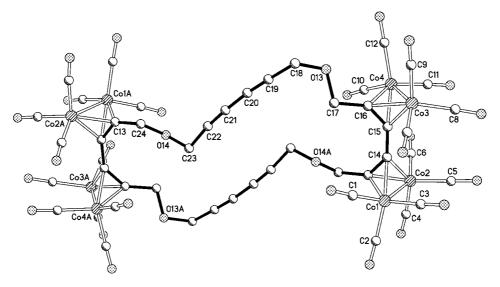


Figure 5. Molecular structure of 7a with partial atom labeling scheme; all hydrogen atoms have been omitted for clarity.

Table 5. Selected bond lengths [Å] and angles (°) for 7a.[a]

	C		
Bond lengths			
C(13A)-C(14)	1.353(3)	C(22)–C(23)	1.471(4)
C(14)–C(15)	1.434(3)	C(23)-O(14)	1.417(3)
C(15)-C(16)	1.358(3)	O(14)-C(24)	1.422(3)
C(16)-C(17)	1.476(3)	C(24)-C(13)	1.479(3)
C(17)-O(13)	1.426(3)	Co(1)-Co(2)	2.4701(5)
O(13)-C(18)	1.422(3)	Co(3)-Co(4)	2.4700(5)
C(18)-C(19)	1.463(4)	Co-C(carbonyl)	1.788(3)-1.831(3)
C(19)-C(20)	1.196(3)	C-O(carbonyl)	1.128(3)-1.139(3)
C(20)-C(21)	1.376(3)	Co-C(alkyne)	1.935(2)-1.968(2)
C(21)-C(22)	1.195(4)		
Bond angles			
C(13A)-C(14)-C(15)	140.0(2)	C(19)-C(20)-C(21)	175.3(3)
C(14)-C(15)-C(16)	140.3(2)	C(20)-C(21)-C(22)	176.4(3)
C(15)-C(16)-C(17)	141.2(2)	C(21)-C(22)-C(23)	173.4(3)
C(16)-C(17)-O(13)	108.49(19)	C(22)-C(23)-O(14)	114.8(2)
C(17)-O(13)-C(18)	112.56(19)	C(23)-O(14)-C(24)	112.9(2)
O(13)-C(18)-C(19)	113.9(2)	O(14)-C(24)-C(13)	107.12(19)
C(18)–C(19)–C(20)	177.2(3)	C(24)–C(13)–C(14A)	138.3(2)

[a] Atoms with suffix A are generated by symmetry (-x + 1/2, -y + 1/2, -z).

Confirmation of the proposed structural types was obtained from single-crystal X-ray diffraction studies that were performed on **8a**, **8b** and **9a**. Suitable crystals of each complex could be grown form dichloromethane solution by diffusion of hexane at 0 °C. Views of **8a**, **8b** and **9a** are shown in Figure 6, Figure 7 and Figure 8; selected bond lengths are angles are listed in Table 6, Table 7 and Table 8.

The molecular structure of **8a** sits on a crystallographic centre of symmetry which lies at the centre of O(13) and the mid-point of the C(21)···C(21A) and C(22)···C(22A) vectors within the phenyl ring; no such centre of symmetry is apparent in **8a**. The structures of **8a** and **8b** are similar and reveal nineteen- (**8a**) and twenty-one-membered (**8b**) macrocyclic rings with one methylene end-group in each $\{Co_2(CO)_6\}_2(cyclo-\mu-\eta^2:\mu-\eta^2-CH_2C_2C_2CH_2)$ unit linked by an oxygen atom and the other by a OCH $_2C\equiv CH_2O$ (**8a**) or by a OCH $_2C_6H_4CH_2O$ (**8b**) moiety. The Co_2C_2 cores, as in related structures, adopt pseudo tetrahedral geometries with all bond lengths within the cores falling in the expected

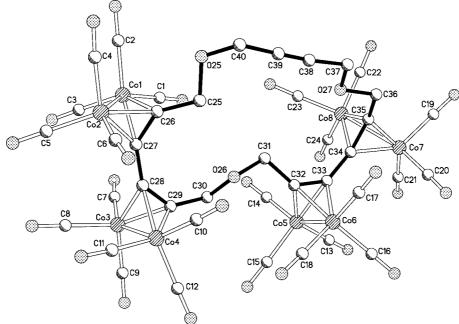


Figure 6. Molecular structure of 8a with partial atom labeling scheme; all hydrogen atoms have been omitted for clarity.

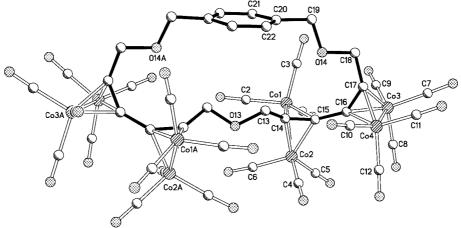


Figure 7. Molecular structure of 8b with partial atom labeling scheme; all hydrogen atoms have been omitted for clarity.

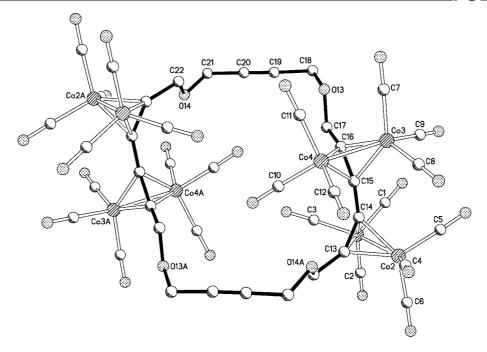


Figure 8. Molecular structure of 9a with partial atom labeling scheme; all hydrogen atoms have been omitted for clarity.

Table 6. Selected bond lengths [Å] and angles (°) for 8a.

	_		*
Bond lengths			
C(25)–C(26)	1.475(5)	C(36)–O(27)	1.422(4)
C(25)-O(25)	1.421(4)	O(27)-C(37)	1.427(4)
C(26)-C(27)	1.349(4)	C(37)-C(38)	1.456(5)
C(27)-C(28)	1.432(4)	C(38)-C(39)	1.195(5)
C(28)-C(29)	1.351(5)	C(39)-C(40)	1.464(5)
C(29)-C(30)	1.484(5)	C(40)-O(25)	1.420(4)
C(30)-O(26)	1.415(4)	Co(1)-Co(2)	2.4699(7)
O(26)-C(31)	1.425(4)	Co(3)-Co(4)	2.4661(6)
C(31)-C(32)	1.492(5)	Co(5)-Co(6)	2.4674(7)
C(32)-C(33)	1.352(5)	Co(7)-Co(8)	2.4758(6)
C(33)-C(34)	1.430(5)	Co-C(carbonyl)	1.782(4)-1.825(5)
C(34)-C(35)	1.353(5)	C-O(carbonyl)	1.122(5)-1.140(5)
C(35)-C(36)	1.482(5)	Co-C(alkyne)	1.936(3)–1.967(3)
Bond angles			
O(25)-C(25)-C(26)	109.7(3)	C(33)–C(34)–C(35)	141.1(3)
C(25)-C(26)-C(27)	139.8(3)	C(34)–C(35)–C(36)	139.0(3)
C(26)-C(27)-C(28)	140.1(3)	C(35)-C(36)-O(27)	109.1(3)
C(27)-C(28)-C(29)	138.8(3)	C(36)-O(27)-C(37)	109.9(3)
C(28)-C(29)-C(30)	137.0(3)	O(27)-C(37)-C(38)	110.5(3)
C(29)-C(30)-O(26)	108.5(3)	C(37)-C(38)-C(39)	174.6(4)
C(30)-O(26)-C(31)	113.7(3)	C(38)–C(39)–C(40)	178.8(4)
O(26)-C(31)-C(32)	115.2(3)	C(39)–C(40)–O(25)	114.2(3)
C(31)-C(32)-C(33)	136.0(3)	C(40)-O(25)-C(25)	112.0(3)
C(32)–C(33)–C(34)	139.9(3)		

ranges for this class of compounds. [12–14] The CH₂–C \equiv C bend back angles reveal some differences between structures with the angle involving the O-linked methylene groups in **8a** being more strained than the OCH₂C \equiv CCH₂O-linked ones [C(28)–C(29)–C(30) 137.0(3), C(31)–C(32)–C(33) 136.0(3)° vs. C(34)–C(35)–C(36) 139.0(3), C(25)–C(26)–C(27) 139.8(3)°]. By contrast, in **8b** the OCH₂C₆H₄CH₂O-linked methylene groups are more strained [C(16)–C(17)–C(18) 135.1(2) vs. C(13)–C(14)–C(15) 142.0(2)°]. As with

Table 7. Selected bond lengths [Å] and angles (°) for **8b**.^[a]

Bond lengths			
C(13)-O(13)	1.406(3)	C(19)-C(20)	1.501(4)
C(13A)-O(13)	1.406(3)	C(20)-C(21)	1.369(4)
C(13)-C(14)	1.484(3)	C(21)-C(22A)	1.379(4)
C(14)-C(15)	1.350(3)	C(20)-C(22)	1.367(4)
C(15)-C(16)	1.420(3)	Co(1)-Co(2)	2.4705(5)
C(16)-C(17)	1.350(3)	Co(3)-Co(4)	2.4698(5)
C(17)-C(18)	1.489(3)	Co-C(carbonyl)	1.779(4)-1.827(3)
C(18)-O(14)	1.426(3)	C-O(carbonyl)	1.125(3)-1.141(3)
O(14)-C(19)	1.430(3)	Co-C(alkyne)	1.941(2)-1.986(2)
Bond angles			-
O(13)-C(13)-C(14)	109.80(19)	C(17)-C(18)-O(14)	107.7(2)
C(13)-C(14)-C(15)	142.0(2)	C(18)-O(14)-C(19)	110.97(18)
C(14)-C(15)-C(16)	140.6(2)	O(14)-C(19)-C(20)	108.9(2)
C(15)-C(16)-C(17)	138.7(2)	C(13A)-O(13)-C(13)	117.6(3)
C(16)-C(17)-C(18)	135.1(2)		

[a] Atoms with suffix A are generated by symmetry (-x, y, 1/2 - z).

Table 8. Selected bond lengths [Å] and angles (°) for 9a.[a]

Bond lengths			
C(13)–C(22A)	1.486(3)	C(20)–C(21)	1.477(3)
C(13)-C(14)	1.349(3)	C(21)-O(14)	1.424(3)
C(14)-C(15)	1.430(3)	O(14)-C(22)	1.428(3)
C(15)-C(16)	1.356(3)	Co(1)-Co(2)	2.4786(4)
C(16)-C(17)	1.484(3)	Co(3)-Co(4)	2.4689(4)
C(17)-O(13)	1.417(3)	Co-C(carbonyl)	1.790(3)-1.830(3)
O(13)-C(18)	1.429(3)	C-O(carbonyl)	1.125(3)-1.136(3)
C(18)-C(19)	1.473(3)	Co-C(alkyne)	1.936(2)-1.976(2)
C(19)-C(20)	1.185(3)		
Bond angles			
C(13)-C(14)-C(15)	143.03(19)	C(18)-C(19)-C(20)	176.7(2)
C(14)-C(15)-C(16)	141.7(2)	C(19)-C(20)-C(21)	177.1(2)
C(15)-C(16)-C(17)	139.6(2)	C(20)-C(21)-O(14)	114.04(19)
C(16)-C(17)-O(13)	109.32(18)	C(21)-O(14)-C(22)	112.74(19)
C(17)-O(13)-C(18)	112.27(17)	O(14)-C(22)-C(13A)	107.41(19)
O(13)-C(18)-C(19)	113.82(18)	C(14)–C(13)–C(22A)	139.0(2)

[a] Atoms with suffix A are generated by symmetry (-x, -y, 1-z).

previous structures in this work the two Co₂C₂ units within each coordinated diyne are disposed in a pseudo cis configuration [torsion angle C(26)-C(27)-C(28)-C(29) 39.6°, C(32)-C(33)-C(34)-C(35) 46.0° (8a); C(14)-C(15)-C(16)-C(17) 47.8° (8b)].

As with 8b, the molecular structure of 9a sits on a crystallographic centre of symmetry which lies in this case be-

tween bonds C(13)-C(22A) and C(13A)-C(22). The structure comprises a twenty-four-membered 1,6,13,18-tetraoxacycloicosatetra-3,8,10,15,20,22-hexayne ring containing two uncoordinated alkyne moieties and two coordinated diyne groups. Within the Co₂C₂ tetrahedral cores there are no unusual features with all bond lengths and angles falling in the expected ranges.^[12-14] In contrast to previous struc-

Scheme 3. Proposed pathway for the formation of 2-9 (R = linking unit).

www.eurjic.org

tures determined in this work, the relative disposition of the two Co_2C_2 fragments on each divine unit can be best described as pseudo *trans* [torsion angle C(13)–C(14)–C(15)–C(16) 101.7°] while the two CH₂–C \equiv C bend back angles are comparable [139.6(2) vs. 139.0(2)°].

The formation of the unsymmetrical complexes **8** was unexpected but could be used as some indirect evidence that the Nicholas reaction chemistry outlined here occurs via sequential functionalisation at the α carbon atoms and not by a dication (e.g., $[\{Co_2(CO)_6(\mu-\eta^2-CH_2C_2-)\}_2]^{2+})$. $[^{6d,17c,19}]$ Indeed, we have shown elsewhere that a mono-functionalised derivative can be isolated on treatment of **1a** with PhSH which can in turn be converted to a di-functionalised derivative with the same or with a different thiol-based nucleophile. $[^{20}]$ With these observations in mind a possible pathway for the formation of the macrocyclic complexes **2**–**9** is shown in Scheme 3.

The initial step for all products proceeds by the formation of the propargylium monocation (intermediate A) when can then can either undergo nucleophilic attack with one end of the alkyl diol, HO(R)OH to form intermediate B or undergo self dimerisation to give 2. Intermediate B can then follow one of two pathways; for complexes 3, 5 and 6 the generation of the cationic species derived from B results in ring closure via an intramolecular reaction. The second pathway is for intermediate B to act as nucleophile and to react with A to form intermediate C. Intermediate C can then in turn follow, via cationic intermediate D, one of two pathways to afford unsymmetrical 8 or symmetrical 4, 7 and 9. It would seem likely that formation of 8 would be preferred with shorter chain R groups (i.e., CH₂C≡CCH₂ or CH₂C₆H₄CH₂) allowing closer proximity of the intramolecular reactive partners in D. Complexes 4, 7 and 9 are formed when D elects to undergo intermolecular nucleophilic attack with HO(R)OH to give intermediate E. Ring closure is achieved by the intramolecular reaction resulting from generation of cationic intermediate F and nucleophilic attack by the remaining hydroxy group on the chain.

4. Conclusions

Our systematic study has showed that the alkyl diols, HOCR₂-linker-CR₂OH (linker = alkyl, glycol, 1,3-diynyl, alkynyl, aryl; R = H, Me), can all act as effective nucleophiles on reaction with 1a to generate crown-type macrocycles containing between and twelve and twenty eight atoms in high yields. In all cases the presence of trace quantities of the self-dimerised product 2 indicates a competitive reaction pathway that was not observed in our previous study of the reactions of thiol-based nucleophiles with 1a.^[9] The nature of the linker in the alkyl diol plays a key role in determining the monomer to dimer ratio, with monomeric 5 being uniquely favoured when 1a is treated with glycols while with alkynyl- or aryl-linked alkyl diols solely the dimeric products 8, 9 result; with alkyl- or 1,3-diyne-linked alkyl diols mixtures of both monomeric (3, 6) and dimeric

species (4, 7) can be isolated. The identification of unsymmetrical dimeric species 8 when alkynyl- or aryl-linked alkyl diols nucleophiles are employed represents an unexpected observation.

Experimental Section

General Remarks: Unless otherwise stated all experiments were carried out under dry, oxygen-free nitrogen, using standard Schlenk line techniques and solvents freshly distilled from appropriate drying agent.[21] NMR spectra were recorded in CDCl3 with a Bruker DRX 400 spectrometer with TMS as an external standard for ¹H and ¹³C spectra at ambient temperature. Infrared spectra were recorded in dichloromethane solution in 0.5-mm NaCl solution cells, with a Perkin-Elmer 1710 Fourier Transform Spectrometer. FAB (Fast atom bombardment) mass spectra were recorded with a Kratos MS 890 instrument using 3-nitrobenzyl alcohol as matrix. Elemental analyses were performed by the Microanalytical Department at the University of Cambridge. Preparative TLC was carried out on 1-mm silica plates prepared at the University of Cambridge. Column chromatography was performed on Kieselgel 60 (70-230 mesh ASTM). All products are listed in order of decreasing $R_{\rm f}$. The reagents, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, triethylene glycol, tetraethylene glycol, tetrafluoroboric acid (54 wt.-% in diethyl ether), 1,4-benzenedimethanol, 2-butyne-1,4-diol, 2,4-hexadiyne-1,6-diol and 2,7-dimethyl-3,5-octadiyne-2,7-diol were obtained from Aldrich Chemical Co. and used without further purification. Complex $[{Co_2(CO)_6(\mu-\eta^2-HOCH_2C_2-)}_2]$ (1a) was prepared by the literature method.[17]

Reaction with HOCH₂(CH₂)₂CH₂OH: Six drops of HBF₄·OEt₂ were added to a stirred solution of 1a (0.50 g, 0.733 mmol) and HOCH₂(CH₂)₂CH₂OH (0.07 mL, 0.764 mmol) in dichloromethane (150 mL) at -78 °C. The solution was warmed to room temperature and after 6 h an excess of sodium hydrogen carbonate was added. All volatiles were removed on the rotary evaporator, the residue taken up in hexane and the suspension filtered through a plug of magnesium sulfate. The filtrate was adsorbed onto silica, the silica pumped dry and added to the top of a chromatography column. Elution with hexane/dichloromethane (8:1) afforded orange crystalline 2 (0.10 g, 10%) and 3a (0.15 g, 28%). Further elution of the column with hexane/dichloromethane (6:1) yielded red crystalline **4a** (0.42 g, 39%). **Complex 2:** $^{13}C\{^{1}H\}$ NMR (CDCl₃, 75 MHz): δ = 199.4 (CO), 96.6 (C≡C), 72.4 (OCH₂) ppm. **Complex 3a**: ¹³C{¹H} NMR (CDCl₃, 75 MHz): $\delta = 199.6$ (CO), 92.6, 82.6 $(C \equiv C)$, 72.3, 71.6 (OCH_2) , 29.7 $[OCH_2(CH_2)_2CH_2O]$ ppm. Com**plex 4a:** ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃, 75 MHz): δ = 191.5, 189.8 (CO), 99.2 (C \equiv C), 71.3, 70.9 (OCH₂), 29.7, 26.8 [OCH₂(CH₂)₂CH₂O]

Reaction with HOCH₂(CH₂)₃CH₂OH: Six drops of HBF₄·OEt₂ were added to a stirred solution of **1a** (0.50 g, 0.733 mmol) and HOCH₂(CH₂)₃CH₂OH (0.08 mL, 0.763 mmol) in dichloromethane (150 mL) at –78 °C. The solution was warmed to room temperature and after 6 h an excess of sodium hydrogen carbonate was added. All volatiles were removed on the rotary evaporator, the residue taken up in hexane and the suspension filtered through a plug of magnesium sulfate. The filtrate was adsorbed onto silica, the silica pumped dry and added to the top of a chromatography column. Elution with hexane/dichloromethane (8:1) afforded orange crystalline **2** (0.05 g, 5%). Further elution of the column with hexane/dichloromethane (6:1) yielded red crystalline **3b** (0.15 g, 28%) and then with hexane/dichloromethane (4:1), orange crystalline **4b** (0.32 g, 29%). **Complex 3b:** 13 C{ 1 H} NMR (CDCl₃, 75 MHz): δ =

196.5 (CO), 98.8 (C=C), 71.6, 69.8 (OCH₂), 26.7, 23.5 [OCH₂(CH₂)₃CH₂O] ppm. **Complex 4b:** 13 C{ 1 H} NMR (CDCl₃, 75 MHz): δ = 199.6 (CO), 94.3 (C=C), 72.8, 71.4 (OCH₂), 24.3, 23.5 [OCH₂(CH₂)₃CH₂O] ppm.

Reaction with HOCH2(CH2)4CH2OH: Six drops of HBF4.OEt2 were added to a stirred solution of 1a (0.50 g, 0.733 mmol) and HOCH₂(CH₂)₄CH₂OH (0.09 g, 0.762 mmol) in dichloromethane (150 mL) at -78 °C. The solution was warmed to room temperature and after 6 h an excess of sodium hydrogen carbonate was added. All volatiles were removed on the rotary evaporator, the residue taken up in hexane and the suspension filtered through a plug of magnesium sulfate. The filtrate was adsorbed onto silica, the silica pumped dry and added to the top of a chromatography column. Elution with hexane/dichloromethane (8:1) afforded orange crystalline 2 (0.10 g, 10%). Further elution of the column with hexane/ dichloromethane (7:1) yielded red crystalline 3c (0.31 g, 55%) and then with hexane/dichloromethane (4:1), orange crystalline 4c (0.31 g, 28%). **Complex 3c:** ¹³C{¹H} NMR (CDCl₃, 75 MHz): 198.9 (CO), 98.7 (C \equiv C), 71.3, 70.1 (OCH₂), 26.7 [OCH₂(CH₂)₄-CH₂O]. Complex 4c: ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃, 75 MHz): $\delta = 198.9$ (CO), 96.8 (C \equiv C), 74.2, 71.3 (OCH₂), 29.6, 25.9 [OCH₂(CH₂)₄-CH₂O] ppm.

Reaction with HO(CH₂CH₂O)₃H: Four drops of HBF₄·OEt₂ were added to a stirred solution of **1a** (0.50 g, 0.733 mmol) and HO-(CH₂CH₂O)₃H (0.10 mL, 0.749 mmol) in dichloromethane (150 mL) at −78 °C. The solution was warmed to room temperature and after 12 h an excess of sodium hydrogen carbonate was added. All volatiles were removed on the rotary evaporator, the residue taken up in hexane and the suspension filtered through a plug of magnesium sulfate. The filtrate was adsorbed onto silica, the silica pumped dry and added to the top of a chromatography column. Elution with hexane/dichloromethane (8:1) afforded orange crystalline **2** (0.05 g, 5%). Further elution of the column with dichloromethane yielded deep red crystalline **5a** (0.49 g, 83%). **Complex 5a**: 13 C{ 1 H} NMR (CDCl₃, 75 MHz): δ = 195.6 (CO), 101.2, 82.6 (C≡C), 72.4, 71.8 (OCH₂) ppm.

Reaction with HO(CH₂CH₂O)₄H: Four drops of HBF₄·OEt₂ were added to a stirred solution of **1a** (0.50 g, 0.733 mmol) and HO-(CH₂CH₂O)₄H (0.13 mL, 0.753 mmol) in dichloromethane (150 mL) at -78 °C. The solution was warmed to room temperature and after 12 h an excess of sodium hydrogen carbonate was added. All volatiles were removed on the rotary evaporator, the residue taken up in hexane and the suspension filtered through a plug of magnesium sulfate. The filtrate was adsorbed onto silica, the silica pumped dry and added to the top of a chromatography column. Elution with hexane/dichloromethane (8:1) afforded orange crystalline **2** (0.10 g, 10%). Further elution of the column with dichloromethane afforded red crystalline **5b** (0.25 g, 40%). **Complex 5b**: 13 C{ 1 H} NMR (CDCl₃, 75 MHz): δ = 199.0 (CO), 98.8, 83.4 (C≡C), 72.0, 71.4, 71.0, 70.8 (OCH₂) ppm.

Reaction with HOCH₂C=CC=CCH₂OH: Six drops of HBF₄·OEt₂ were added to a stirred solution of **1a** (0.50 g, 0.733 mmol) and HOCH₂C=CC=CCH₂OH (0.080 g, 0.736 mmol) in dichloromethane (150 mL) at room temperature. After 16 h of stirring an excess of sodium hydrogen carbonate was added. All volatiles were removed on the rotary evaporator, the residue taken up in hexane and the suspension filtered through a plug of magnesium sulfate. The filtrate was adsorbed onto silica, the silica pumped dry and added to the top of a chromatography column. Elution with hexane/dichloromethane (8:1) afforded orange crystalline **2** (0.04 g, 4%). Further elution of the column with hexane/dichloromethane (3:1) gave deep red crystalline **6a** (0.18 g, 32%) and then with hex

ane/dichloromethane (2:1), deep red crystalline **7a** (0.18 g, 32%). **Complex 6a:** 13 C{ 1 H} NMR (CDCl₃, 75 MHz): δ = 194.3 (CO), 98.4, 91.2 (C \equiv C), 73.2, 71.2 (OCH₂) ppm. **Complex 7a:** 13 C{ 1 H} NMR (CDCl₃, 75 MHz): δ = 198.7 (CO), 101.2, 82.6 (C \equiv C), 74.6, 71.2 (OCH₂) ppm.

Reaction with HOC(Me)₂C=CC=CC(Me)₂OH: Six drops of HBF₄·OEt₂ were added to a stirred solution of **1a** (0.50 g, 0.733 mmol) and $HOC(Me)_2C = CC = CC(Me)_2OH$ (0.081 g, 0.736 mmol) in dichloromethane (150 mL) at room temperature. After 16 h of stirring an excess of sodium hydrogen carbonate was added. All volatiles were removed on the rotary evaporator, the residue taken up in hexane and the suspension filtered through a plug of magnesium sulfate. The filtrate was adsorbed onto silica, the silica pumped dry and added to the top of a chromatography column. Elution with hexane/dichloromethane (8:1) afforded orange crystalline 2 (0.04 g, 4%). Further elution of the column with hexane/dichloromethane (4:1) gave red crystalline 6b (0.16 g, 27%) and then with hexane/dichloromethane (2:1), orange crystalline **7b** (0.41 g, 34%). **Complex 6b:** ¹³C{¹H} NMR (CDCl₃, 75 MHz): $\delta = 198.9$ (CO), 96.4, 82.4 (C \equiv C), 72.6 [OC(CH₃)₂], 28.4 (CH₃) ppm. Complex 7b: ${}^{13}C{}^{1}H$ } NMR (CDCl₃, 75 MHz): $\delta =$ 198.9 (CO), 98.6, 84.2 (C \equiv C), 72.5 [OC(CH₃)₂], 26.9 (CH₃) ppm.

Reaction with $HOCH_2C \equiv CCH_2OH$: Six drops of $HBF_4 \cdot OEt_2$ were added to a stirred solution of 1a (0.50 g, 0.733 mmol) and HOCH₂C≡CCH₂OH (0.065 g, 0.755 mmol) in dichloromethane (150 mL) at room temperature. After 16 h of stirring an excess of sodium hydrogen carbonate was added. All volatiles were removed on the rotary evaporator, the residue dissolved in hexane and the solution filtered through a plug of magnesium sulfate. The filtrate was adsorbed onto silica, the silica pumped dry and added to the top of a chromatography column. Elution with hexane/dichloromethane (8:1) afforded orange crystalline 2 (0.04 g, 4%). Further elution of the column with hexane/dichloromethane (4:1) gave deep red crystalline 8a (0.24 g, 23%) and then with hexane/dichloromethane (3:1), deep red crystalline 9a (0.52 g, 48%). Complex 8a: ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 199.9 (CO), 104.2, 94.3, 89.6 $(C \equiv C)$, 74.3, 72.4, 68.2 (CH_2) ppm. Complex 9a: ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃, 75 MHz): $\delta = 194.5$ (CO), 94.2, 92.6 (C \equiv C), 74.8, 73.2 (OCH₂) ppm.

Reaction with HOCH₂(C₆H₄)CH₂OH: Six drops of HBF₄·OEt₂ were added to a stirred solution of 1a (0.50 g, 0.733 mmol) and HOCH₂(C₆H₄)CH₂OH (0.11 g, 0.796 mmol) in dichloromethane (150 mL) at room temperature. After 16 h of stirring an excess of sodium hydrogen carbonate was added. All volatiles were removed on the rotary evaporator, the residue dissolved in hexane and the solution filtered through a plug of magnesium sulfate. The filtrate was adsorbed onto silica, the silica pumped dry and added to the top of a chromatography column. Elution with hexane/dichloromethane (8:1) afforded orange crystalline 2 (0.04 g, 4%). Further elution of the column with hexane/dichloromethane (4:1) yielded deep red crystalline 8b (0.42 g, 40%) and then with hexane/dichloromethane (3:1), deep red crystalline 9b (0.39 g, 34%). Complex 8b: ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 199.0 (CO), 137.7, 129.3 (Ph), 101.2, 97.9, 92.7 (C≡C), 73.7, 72.6, 71.7 (OCH₂) ppm. Com**plex 9b:** ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃, 75 MHz): δ = 198.9 (CO), 137.6, 127.9 (Ph), 99.7, 92.7 (C≡C), 72.8, 70.6 (OCH₂) ppm.

Crystallographic Studies: Single crystal X-ray diffraction data for 2, 3a, 5a, 7a, 8a, 8b and 9a were collected using a Nonius-Kappa CCD diffractometer, equipped with an Oxford Cryosystems cyrostream and employing Mo- K_{α} ($\lambda=0.71073$ Å) irradiation from a sealed tube X-ray source. Cell refinement, data collection and data

reduction were performed with the programs DENZO^[22] and COLLECT^[23] and multi-scan absorption corrections were applied to all intensity data with the program SORTAV^[24] All structures were solved and refined with the programs SHELXS97 and SHELXL97,^[25] respectively. Hydrogen atoms were included in calculated positions (C–H = 0.96 Å) riding on the bonded atom with

isotropic displacement parameters set to $1.5U_{\rm eq}(C)$ for methyl H atoms and $1.2U_{\rm eq}(C)$ for all other H atoms. Details of the data collection, refinement and crystal data are listed in Table 9.

CCDC-634737 (for **2**), -634738 (for **3a**), -634739 (for **5a**), -634740 (for **7a**), -63741 (for **8a**), -63743 (for **8b**) and -63742 (for **9a**) contain

Table 9. Crystallographic and data processing parameters for 2, 3a, 5a, 7a, 8a, 8b and 9a.[a]

Complex	2	3a	5a	7a
Formula	$C_{36}H_{8}Co_{8}O_{26}$	C ₂₂ H ₁₂ Co ₄ O ₁₄	C ₂₄ H ₁₆ Co ₄ O ₁₆	C ₄₈ H ₁₆ Co ₈ O ₂₈
M	1327.86	736.04	796.09	1512.05
Crystal size [mm ³]	$0.16 \times 0.16 \times 0.14$	$0.23 \times 0.18 \times 0.18$	$0.16 \times 0.14 \times 0.07$	$0.23 \times 0.11 \times 0.02$
Temperature [K]	180(2)	218(2)	180(2)	180(2)
Crystal system	triclinic	monoclinic	triclinic	monoclinic
Space group	$P\bar{1}$	$P2_1/c$	$P\bar{1}$	C2/c
a [Å]	9.1421(2)	10.5931(2)	9.3341(3)	30.6875(9)
b [Å]	9.7436(2)	29.3338(6)	10.8973(4)	9.7804(3)
$c [\mathring{A}]$	13.8812(3)	18.0644(2)	16.0019(5)	18.9422(3)
a [°]	81.4780(10)	90	87.727(2)	90
β [°]	75.7070(10)	102.1540(10)	77.193(2)	93.862(2)
<i>p</i> []	` /	90		
γ [°]	68.0840(10)		73.997(2)	90
$V[A^3]$	1109.47(4)	5487.44(16)	1525.26(9)	5672.3(3)
Z	1	8	2	4
$D_{\rm c} [{\rm Mg \cdot m^{-3}}]$	1.987	1.782	1.733	1.771
F(000)	648	2912	792	2976
$\mu(\text{Mo-}K_{\alpha})[\text{mm}^{-1}]$	3.005	2.443	2.209	2.366
Reflections collected	29146	41586	18340	22382
Independent reflections	5084	12431	6923	6445
$R_{\rm int}$	0.0572	0.0641	0.0475	0.0650
Restraints/parameters	0/316	3/710	0/397	0/379
Final R indices	$R_1 = 0.0273$	$R_1 = 0.0419$	$R_1 = 0.0334$	$R_1 = 0.0364$
$[I > 2\sigma(I)]$	$wR_2 = 0.0639$	$wR_2 = 0.0917$	$wR_2 = 0.0609$	$wR_2 = 0.0848$
All data	$R_1 = 0.0374$	$R_1 = 0.0775$	$R_1 = 0.0581$	$R_1 = 0.0519$
111 0000	$wR_2 = 0.0674$	$wR_2 = 0.1043$	$wR_2 = 0.0683$	$wR_2 = 0.0923$
		W112 0.1013		
Goodness of fit on F^2 (all data)	1.070	1.041	1.009	1.027
Goodness of fit on F^2 (all data) Complex	1.070 8a	1.041 8b	1.009 9a	1.027
Complex	8a	8b	9a	1.027
Complex Formula	8a C ₄₀ H ₁₂ Co ₈ O ₂₇ •0.5C ₆	8b H ₁₄ C ₄₄ H ₁₆ Co ₈ O ₂₇	9a C ₄₄ H ₁₆ Co ₈ O ₂₈	1.027
Complex Formula M	8a C ₄₀ H ₁₂ Co ₈ O ₂₇ ·0.5C ₆ 1439.02	8b H ₁₄ C ₄₄ H ₁₆ Co ₈ O ₂₇ 1448.01	9a C ₄₄ H ₁₆ Co ₈ O ₂₈ 1464.01	1.027
Complex Formula M Crystal size [mm³]	8a C ₄₀ H ₁₂ Co ₈ O ₂₇ ·0.5C ₆ 1439.02 0.18 × 0.16 × 0.09	8b H ₁₄ C ₄₄ H ₁₆ Co ₈ O ₂₇ 1448.01 0.23 × 0.14 × 0.05	9a C ₄₄ H ₁₆ Co ₈ O ₂₈ 1464.01 0.16 × 0.14 × 0.05	1.027
Complex Formula M Crystal size [mm³] Temperature [K]	8a C ₄₀ H ₁₂ Co ₈ O ₂₇ ·0.5C ₆ 1439.02 0.18 × 0.16 × 0.09 220(2)	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$	$\begin{array}{c} \textbf{9a} \\ \textbf{C}_{44}\textbf{H}_{16}\textbf{Co}_{8}\textbf{O}_{28} \\ \textbf{1464.01} \\ \textbf{0.16} \times \textbf{0.14} \times \textbf{0.05} \\ \textbf{180(2)} \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system	8a $C_{40}H_{12}Co_8O_{27}\cdot 0.5C_6$ 1439.02 $0.18 \times 0.16 \times 0.09$ $220(2)$ triclinic	$\begin{array}{c} \textbf{8b} \\ \textbf{H}_{14}\textbf{C}_{44}\textbf{H}_{16}\textbf{Co}_{8}\textbf{O}_{27} \\ 1448.01 \\ 0.23\times0.14\times0.05 \\ 180(2) \\ \text{monoclinic} \end{array}$	$\begin{array}{c} \textbf{9a} \\ \textbf{C}_{44}\textbf{H}_{16}\textbf{Co}_{8}\textbf{O}_{28} \\ \textbf{1464.01} \\ \textbf{0.16} \times \textbf{0.14} \times \textbf{0.05} \\ \textbf{180(2)} \\ \textbf{triclinic} \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group	8a $C_{40}H_{12}Co_8O_{27}\cdot 0.5C_6$ 1439.02 $0.18 \times 0.16 \times 0.09$ $220(2)$ triclinic $P\hat{1}$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$ monoclinic $C2/c$	$\begin{array}{c} \textbf{9a} \\ \textbf{C}_{44}\textbf{H}_{16}\textbf{Co}_{8}\textbf{O}_{28} \\ \textbf{1464.01} \\ \textbf{0.16} \times \textbf{0.14} \times \textbf{0.05} \\ \textbf{180(2)} \\ \textbf{triclinic} \\ \textbf{P}\bar{\textbf{I}} \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å]	8a $C_{40}H_{12}Co_8O_{27}\cdot 0.5C_6$ 1439.02 $0.18 \times 0.16 \times 0.09$ $220(2)$ triclinic $P\vec{1}$ $10.6824(2)$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$ monoclinic $C2/c$ $15.6580(5)$	$\begin{array}{c} \textbf{9a} \\ \textbf{C}_{44}\textbf{H}_{16}\textbf{Co}_{8}\textbf{O}_{28} \\ \textbf{1464.01} \\ \textbf{0.16} \times \textbf{0.14} \times \textbf{0.05} \\ \textbf{180(2)} \\ \textbf{triclinic} \\ \textbf{P}\bar{\textbf{I}} \\ \textbf{8.9576(3)} \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å]	8a $C_{40}H_{12}Co_8O_{27}\cdot 0.5C_6$ 1439.02 $0.18 \times 0.16 \times 0.09$ $220(2)$ triclinic $P\bar{1}$ $10.6824(2)$ $15.9498(5)$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$ monoclinic $C2/c$ $15.6580(5)$ $10.3968(2)$	$\begin{array}{c} \textbf{9a} \\ \textbf{C}_{44}\textbf{H}_{16}\textbf{Co}_{8}\textbf{O}_{28} \\ \textbf{1464.01} \\ \textbf{0.16} \times \textbf{0.14} \times \textbf{0.05} \\ \textbf{180(2)} \\ \textbf{triclinic} \\ \textbf{\textit{P}}\bar{\textbf{I}} \\ \textbf{8.9576(3)} \\ \textbf{10.3831(4)} \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å]	8a $C_{40}H_{12}Co_8O_{27}\cdot 0.5C_6$ 1439.02 $0.18 \times 0.16 \times 0.09$ $220(2)$ triclinic $P\bar{1}$ $10.6824(2)$ $15.9498(5)$ $17.1603(5)$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$ monoclinic $C2/c$ $15.6580(5)$ $10.3968(2)$ $33.3519(11)$	$\begin{array}{c} \textbf{9a} \\ \hline \textbf{C}_{44}\textbf{H}_{16}\textbf{Co}_{8}\textbf{O}_{28} \\ \textbf{1464.01} \\ \textbf{0.16} \times \textbf{0.14} \times \textbf{0.05} \\ \textbf{180(2)} \\ \textbf{triclinic} \\ \textbf{\textit{PI}} \\ \textbf{8.9576(3)} \\ \textbf{10.3831(4)} \\ \textbf{15.6330(4)} \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°]	8a $C_{40}H_{12}Co_8O_{27}\cdot 0.5C_6$ 1439.02 $0.18 \times 0.16 \times 0.09$ $220(2)$ triclinic $P\bar{1}$ $10.6824(2)$ $15.9498(5)$ $17.1603(5)$ $74.682(2)$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$ monoclinic $C2/c$ $15.6580(5)$ $10.3968(2)$ $33.3519(11)$ 90	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ P\bar{1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] b [Å] c [Å] d [Å]	8a $C_{40}H_{12}Co_8O_{27}\cdot 0.5C_6$ 1439.02 $0.18 \times 0.16 \times 0.09$ $220(2)$ triclinic $P\bar{1}$ $10.6824(2)$ $15.9498(5)$ $17.1603(5)$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$ monoclinic $C2/c$ $15.6580(5)$ $10.3968(2)$ $33.3519(11)$	$\begin{array}{c} \textbf{9a} \\ \hline \textbf{C}_{44}\textbf{H}_{16}\textbf{Co}_{8}\textbf{O}_{28} \\ \textbf{1464.01} \\ \textbf{0.16} \times \textbf{0.14} \times \textbf{0.05} \\ \textbf{180(2)} \\ \textbf{triclinic} \\ \textbf{\textit{PI}} \\ \textbf{8.9576(3)} \\ \textbf{10.3831(4)} \\ \textbf{15.6330(4)} \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] c [Å] a [°] β [°] β [°] γ [°]	8a $C_{40}H_{12}Co_8O_{27}\cdot 0.5C_6$ 1439.02 $0.18 \times 0.16 \times 0.09$ $220(2)$ triclinic $P\bar{1}$ $10.6824(2)$ $15.9498(5)$ $17.1603(5)$ $74.682(2)$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$ monoclinic $C2/c$ $15.6580(5)$ $10.3968(2)$ $33.3519(11)$ 90	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ P\bar{1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] b [Å] c [Å] a [°] a [°] a [°]	8a $C_{40}H_{12}Co_8O_{27}\cdot 0.5C_6$ 1439.02 $0.18\times 0.16\times 0.09$ 220(2) triclinic $P\bar{1}$ 10.6824(2) 15.9498(5) 17.1603(5) 74.682(2) 80.721(2)	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$ monoclinic $C2/c$ $15.6580(5)$ $10.3968(2)$ $33.3519(11)$ 90 $97.216(2)$	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ P\bar{1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z	$\begin{array}{c} \textbf{8a} \\ \hline C_{40} H_{12} Co_8 O_{27} \cdot 0.5 C_6 \\ 1439.02 \\ 0.18 \times 0.16 \times 0.09 \\ 220(2) \\ triclinic \\ P\overline{1} \\ 10.6824(2) \\ 15.9498(5) \\ 17.1603(5) \\ 74.682(2) \\ 80.721(2) \\ 73.670(2) \\ 2694.21(13) \\ 2 \\ \end{array}$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$ monoclinic $C2/c$ $15.6580(5)$ $10.3968(2)$ $33.3519(11)$ 90 $97.216(2)$ 90	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ P\bar{1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z	$\begin{array}{c} \textbf{8a} \\ \hline C_{40} H_{12} Co_8 O_{27} \cdot 0.5 C_6 \\ 1439.02 \\ 0.18 \times 0.16 \times 0.09 \\ 220(2) \\ triclinic \\ P\overline{1} \\ 10.6824(2) \\ 15.9498(5) \\ 17.1603(5) \\ 74.682(2) \\ 80.721(2) \\ 73.670(2) \\ 2694.21(13) \\ 2 \\ \end{array}$	8b H ₁₄ C ₄₄ H ₁₆ Co ₈ O ₂₇ 1448.01 0.23 × 0.14 × 0.05 180(2) monoclinic C2/c 15.6580(5) 10.3968(2) 33.3519(11) 90 97.216(2) 90 5386.5(3)	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ \hline \textit{P1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z D_c [Mg·m⁻³]	8a $ C_{40}H_{12}Co_8O_{27} \cdot 0.5C_6 \\ 1439.02 \\ 0.18 \times 0.16 \times 0.09 \\ 220(2) \\ triclinic \\ P\overline{1} \\ 10.6824(2) \\ 15.9498(5) \\ 17.1603(5) \\ 74.682(2) \\ 80.721(2) \\ 73.670(2) \\ 2694.21(13) \\ 2 \\ 1.774 $	8b H ₁₄ C ₄₄ H ₁₆ Co ₈ O ₂₇ 1448.01 0.23 × 0.14 × 0.05 180(2) monoclinic <i>C2/c</i> 15.6580(5) 10.3968(2) 33.3519(11) 90 97.216(2) 90 5386.5(3) 4 1.786	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ \hline \textit{P1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ 1 \\ 1.838 \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z D_c [Mg·m⁻³] $F(000)$	8a $ C_{40}H_{12}Co_8O_{27} \cdot 0.5C_6 $ $1439.02 $ $0.18 \times 0.16 \times 0.09 $ $220(2) $ $triclinic $ $P\overline{1} $ $10.6824(2) $ $15.9498(5) $ $17.1603(5) $ $74.682(2) $ $80.721(2) $ $73.670(2) $ $2694.21(13) $ $2 $ $1.774 $ $1418 $	8b H ₁₄ C ₄₄ H ₁₆ Co ₈ O ₂₇ 1448.01 0.23 × 0.14 × 0.05 180(2) monoclinic C2/c 15.6580(5) 10.3968(2) 33.3519(11) 90 97.216(2) 90 5386.5(3) 4 1.786 2848	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ \hline \textit{P1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ 1 \\ 1.838 \\ 720 \\ \hline \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°]	8a $ C_{40}H_{12}Co_8O_{27} \cdot 0.5C_6 \\ 1439.02 \\ 0.18 \times 0.16 \times 0.09 \\ 220(2) \\ triclinic \\ P\overline{1} \\ 10.6824(2) \\ 15.9498(5) \\ 17.1603(5) \\ 74.682(2) \\ 80.721(2) \\ 73.670(2) \\ 2694.21(13) \\ 2 \\ 1.774 \\ 1418 \\ 2.484 $	8b H ₁₄ C ₄₄ H ₁₆ Co ₈ O ₂₇ 1448.01 0.23 × 0.14 × 0.05 180(2) monoclinic <i>C2/c</i> 15.6580(5) 10.3968(2) 33.3519(11) 90 97.216(2) 90 5386.5(3) 4 1.786 2848 2.486	$\begin{array}{c} \textbf{9a} \\ \hline C_{44}H_{16}Co_8O_{28} \\ 1464.01 \\ 0.16\times0.14\times0.05 \\ 180(2) \\ \text{triclinic} \\ P\bar{1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ 1 \\ 1.838 \\ 720 \\ 2.533 \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°]	$\begin{array}{c} \textbf{8a} \\ \hline C_{40} H_{12} Co_8 O_{27} \cdot 0.5 C_6 \\ 1439.02 \\ 0.18 \times 0.16 \times 0.09 \\ 220(2) \\ \text{triclinic} \\ P\overline{1} \\ 10.6824(2) \\ 15.9498(5) \\ 17.1603(5) \\ 74.682(2) \\ 80.721(2) \\ 73.670(2) \\ 2694.21(13) \\ 2 \\ 1.774 \\ 1418 \\ 2.484 \\ 28377 \\ \end{array}$	8b H ₁₄ C ₄₄ H ₁₆ Co ₈ O ₂₇ 1448.01 0.23 × 0.14 × 0.05 180(2) monoclinic <i>C2/c</i> 15.6580(5) 10.3968(2) 33.3519(11) 90 97.216(2) 90 5386.5(3) 4 1.786 2848 2.486 14546	$\begin{array}{c} \textbf{9a} \\ \hline C_{44}H_{16}Co_8O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ P\bar{1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ 1 \\ 1.838 \\ 720 \\ 2.533 \\ 15323 \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°]	$\begin{array}{c} \textbf{8a} \\ \hline C_{40} H_{12} Co_8 O_{27} \cdot 0.5 C_6 \\ 1439.02 \\ 0.18 \times 0.16 \times 0.09 \\ 220(2) \\ \text{triclinic} \\ P\overline{1} \\ 10.6824(2) \\ 15.9498(5) \\ 17.1603(5) \\ 74.682(2) \\ 80.721(2) \\ 73.670(2) \\ 2694.21(13) \\ 2 \\ 1.774 \\ 1418 \\ 2.484 \\ 28377 \\ 12158 \\ \end{array}$	8b H ₁₄ C ₄₄ H ₁₆ Co ₈ O ₂₇ 1448.01 0.23 × 0.14 × 0.05 180(2) monoclinic <i>C2lc</i> 15.6580(5) 10.3968(2) 33.3519(11) 90 97.216(2) 90 5386.5(3) 4 1.786 2848 2.486 14546 5984	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ P\overline{1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ 1 \\ 1.838 \\ 720 \\ 2.533 \\ 15323 \\ 6052 \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z D_c [Mg·m⁻³] $F(000)$ μ (Mo- K_a)[mm⁻¹] Reflections collected Independent reflections $R_{\rm int}$	$\begin{array}{c} \textbf{8a} \\ \hline C_{40} H_{12} Co_8 O_{27} \cdot 0.5 C_6 \\ 1439.02 \\ 0.18 \times 0.16 \times 0.09 \\ 220(2) \\ \text{triclinic} \\ P\overline{1} \\ 10.6824(2) \\ 15.9498(5) \\ 17.1603(5) \\ 74.682(2) \\ 80.721(2) \\ 73.670(2) \\ 2694.21(13) \\ 2 \\ 1.774 \\ 1418 \\ 2.484 \\ 28377 \\ 12158 \\ 0.0534 \\ \end{array}$	8b H ₁₄ C ₄₄ H ₁₆ Co ₈ O ₂₇ 1448.01 0.23 × 0.14 × 0.05 180(2) monoclinic <i>C2Ic</i> 15.6580(5) 10.3968(2) 33.3519(11) 90 97.216(2) 90 5386.5(3) 4 1.786 2848 2.486 14546 5984 0.0528	$\begin{array}{c} \textbf{9a} \\ \hline C_{44}H_{16}Co_8O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ \textbf{\textit{PI}} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ 1 \\ 1.838 \\ 720 \\ 2.533 \\ 15323 \\ 6052 \\ 0.0541 \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z D_c [Mg·m⁻³] $F(000)$ μ (Mo- K_a)[mm⁻¹] Reflections collected Independent reflections R_{int} Restraints/parameters	$\begin{array}{c} \textbf{8a} \\ \hline C_{40} H_{12} Co_8 O_{27} \cdot 0.5 C_6 \\ 1439.02 \\ 0.18 \times 0.16 \times 0.09 \\ 220(2) \\ triclinic \\ P\overline{1} \\ 10.6824(2) \\ 15.9498(5) \\ 17.1603(5) \\ 74.682(2) \\ 80.721(2) \\ 73.670(2) \\ 2694.21(13) \\ 2 \\ 1.774 \\ 1418 \\ 2.484 \\ 28377 \\ 12158 \\ 0.0534 \\ 5/688 \\ \end{array}$	8b H ₁₄ C ₄₄ H ₁₆ Co ₈ O ₂₇ 1448.01 0.23 × 0.14 × 0.05 180(2) monoclinic C2/c 15.6580(5) 10.3968(2) 33.3519(11) 90 97.216(2) 90 5386.5(3) 4 1.786 2848 2.486 14546 5984 0.0528 0/357	$\begin{array}{c} \textbf{9a} \\ \hline C_{44}H_{16}Co_8O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ \textbf{\textit{PI}} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ 1 \\ 1.838 \\ 720 \\ 2.533 \\ 15323 \\ 6052 \\ 0.0541 \\ 0/361 \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z D_c [Mg·m⁻³] $F(000)$ μ (Mo- K_a)[mm⁻¹] Reflections collected Independent reflections R_{int} Restraints/parameters Final R indices	$\begin{array}{c} \textbf{8a} \\ \hline C_{40} H_{12} Co_8 O_{27} \cdot 0.5 C_6 \\ 1439.02 \\ 0.18 \times 0.16 \times 0.09 \\ 220(2) \\ \text{triclinic} \\ \hline{\textit{P1}} \\ 10.6824(2) \\ 15.9498(5) \\ 17.1603(5) \\ 74.682(2) \\ 80.721(2) \\ 73.670(2) \\ 2694.21(13) \\ 2 \\ 1.774 \\ 1418 \\ 2.484 \\ 28377 \\ 12158 \\ 0.0534 \\ 5/688 \\ R_1 = 0.0437 \\ \end{array}$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$ monoclinic C2/c $15.6580(5)$ $10.3968(2)$ $33.3519(11)$ 90 $97.216(2)$ 90 $5386.5(3)$ 4 1.786 2848 2.486 14546 5984 0.0528 $0/357$ $R_1 = 0.0363$	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ P\bar{1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ 1 \\ 1.838 \\ 720 \\ 2.533 \\ 15323 \\ 6052 \\ 0.0541 \\ 0/361 \\ R_1 = 0.0335 \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] c [Å] d [d [Å] d [d [Å] d [d [d [d]] d [d]] c [Å] d [d]] c [Å] d [d]] d [8a $C_{40}H_{12}Co_8O_{27}\cdot 0.5C_6$ 1439.02 $0.18 \times 0.16 \times 0.09$ $220(2)$ triclinic $P\overline{1}$ $10.6824(2)$ $15.9498(5)$ $17.1603(5)$ $74.682(2)$ $80.721(2)$ $73.670(2)$ $2694.21(13)$ 2 1.774 1418 2.484 28377 12158 0.0534 $5/688$ $R_1 = 0.0437$ $wR_2 = 0.0988$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 0.23 × 0.14 × 0.05 180(2) monoclinic C2/c 15.6580(5) 10.3968(2) 33.3519(11) 90 97.216(2) 90 5386.5(3) 4 1.786 2848 2.486 14546 5984 0.0528 0/357 $R_1 = 0.0363$ $wR_2 = 0.0789$	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ P\bar{1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ 1 \\ 1.838 \\ 720 \\ 2.533 \\ 15323 \\ 6052 \\ 0.0541 \\ 0/361 \\ R_1 = 0.0335 \\ wR_2 = 0.0733 \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z D_c [Mg·m³] $F(000)$ μ (Mo- K_a)[mm¹] Reflections collected Independent reflections $R_{\rm int}$ Restraints/parameters Final R indices	8a $C_{40}H_{12}Co_8O_{27} \cdot 0.5C_6$ 1439.02 $0.18 \times 0.16 \times 0.09$ $220(2)$ $triclinic$ $P\bar{1}$ $10.6824(2)$ $15.9498(5)$ $17.1603(5)$ $74.682(2)$ $80.721(2)$ $73.670(2)$ $2694.21(13)$ 2 1.774 1418 2.484 28377 12158 0.0534 $5/688$ $R_1 = 0.0437$ $wR_2 = 0.0988$ $R_1 = 0.0731$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 $0.23 \times 0.14 \times 0.05$ $180(2)$ monoclinic $C2/c$ $15.6580(5)$ $10.3968(2)$ $33.3519(11)$ 90 $97.216(2)$ 90 $5386.5(3)$ 4 1.786 2848 2.486 14546 5984 0.0528 $0/357$ $R_1 = 0.0363$ $wR_2 = 0.0789$ $R_1 = 0.0607$	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ \hline \textit{P1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ 1 \\ 1.838 \\ 720 \\ 2.533 \\ 15323 \\ 6052 \\ 0.0541 \\ 0/361 \\ R_1 = 0.0335 \\ wR_2 = 0.0733 \\ R_1 = 0.0469 \\ \end{array}$	1.027
Complex Formula M Crystal size [mm³] Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] c [Å] d [d [Å] d [d [Å] d [d [d [d]] d [d]	8a $C_{40}H_{12}Co_8O_{27}\cdot 0.5C_6$ 1439.02 $0.18 \times 0.16 \times 0.09$ $220(2)$ triclinic $P\overline{1}$ $10.6824(2)$ $15.9498(5)$ $17.1603(5)$ $74.682(2)$ $80.721(2)$ $73.670(2)$ $2694.21(13)$ 2 1.774 1418 2.484 28377 12158 0.0534 $5/688$ $R_1 = 0.0437$ $wR_2 = 0.0988$	8b $H_{14}C_{44}H_{16}Co_8O_{27}$ 1448.01 0.23 × 0.14 × 0.05 180(2) monoclinic C2/c 15.6580(5) 10.3968(2) 33.3519(11) 90 97.216(2) 90 5386.5(3) 4 1.786 2848 2.486 14546 5984 0.0528 0/357 $R_1 = 0.0363$ $wR_2 = 0.0789$	$\begin{array}{c} \textbf{9a} \\ \hline C_{44} H_{16} Co_8 O_{28} \\ 1464.01 \\ 0.16 \times 0.14 \times 0.05 \\ 180(2) \\ \text{triclinic} \\ P\bar{1} \\ 8.9576(3) \\ 10.3831(4) \\ 15.6330(4) \\ 104.052(2) \\ 96.197(2) \\ 107.097(2) \\ 1322.69(8) \\ 1 \\ 1.838 \\ 720 \\ 2.533 \\ 15323 \\ 6052 \\ 0.0541 \\ 0/361 \\ R_1 = 0.0335 \\ wR_2 = 0.0733 \\ \end{array}$	1.027

[[]a] Data in common: graphite-monochromated Mo- K_a radiation, $\lambda = 0.71073$ Å; $R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$, $wR_2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)^2]1/2$, $w^{-1} = [\sigma^2(F_o)^2 + (aP)^2]$, $P = [\max.(F_o^2, 0) + 2(F_c^2)]/3$, where a is a constant adjusted by the program; goodness of fit $= [\Sigma(F_o^2 - F_c^2)^2/(n-p)]^{1/2}$ where n is the number of reflections and p the number of parameters.

www.eurjic.org

the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments

We acknowledge the financial support of the Engineering and Physical Sciences Research Council (EPSRC) (L. J. H.-W) and Dstl. Fort Halstead (L. J. H.-W). The help of the EPSRC mass spectrometry service, Swansea is gratefully acknowledged. Dr John E. Davies is thanked for crystal structure determinations.

- For reviews see: a) G. G. Melikyan, K. M. Nicholas, in *Modern Acetylene Chemistry* (Eds.: P. J. Stang, F. Diederich), VCH, Weinheim, 1995, chapter 4, pp. 99–139; b) A. J. M. Caffyn, K. M. Nicholas, in *Comprehensive Organometallic Chemistry II* (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, Oxford, 1995, vol. 12, chapter 7, pp. 685–702; c) K. M. Nicholas, *Acc. Chem. Res.* 1987, 20, 207–214; d) B. J. Teobald, *Tetrahedron* 2002, 58, 4133–4170.
- [2] a) M. Isobe, R. Nishizawa, S. Hosokawa, T. Nishikawa, *Chem. Commun.* 1998, 2665–2676; b) N. Ortega, T. Martin, V. S. Martin, *Org. Lett.* 2006, 8, 871–873 and refs therein; c) C. Mukai, S. Yamaguchi, Y. Sugimoto, N. Miyakoshi, E. Kasamatsu, M. Hanaoka, *J. Org. Chem.* 2000, 65, 6761–6765.
- a) A. Gelling, G. F. Mohmand, J. C. Jeffery, M. J. Went, J. Chem. Soc., Dalton Trans. 1993, 1857–1862; b) A. Gelling, J. C. Jeffery, D. C. Povey, M. J. Went, J. Chem. Soc., Chem. Commun. 1991, 349–351; c) F. Demirhan, A. Gelling, S. Irisli, J. C. Jeffery, S. N. Salek, O. S. Senturk, M. J. Went, J. Chem. Soc., Dalton Trans. 1993, 2765–2773; d) F. Demirhan, S. Irisli, S. N. Salek, O. S. Senturk, M. J. Went, J. C. Jeffery, J. Organomet. Chem. 1993, 453, C30–C31; e) S. C. Bennett, J. C. Jeffery, M. J. Went, J. Chem. Soc., Dalton Trans. 1994, 3171–3176.
- [4] E. Alvaro, M. C. de la Torre, M. A. Sierra, Chem. Commun. 2006, 985–987.
- [5] G. G. Melikyan, M. A. Khan, K. M. Nicholas, *Organometallics* 1995, 14, 2170–2172.
- [6] a) R. Guo, J. R. Green, *Chem. Commun.* 1999, 2503–2504; b)
 R. Gibe, J. R. Green, G. Davidson, *Org. Lett.* 2003, 5, 1003–1005; c) R. Gibe, J. R. Green, *Chem. Commun.* 2002, 1550–1551; d) R. Guo, J. R. Green, *Synlett* 2000, 746–748.
- [7] See for example: a) R. M. Izatt, K. Pawlak, J. S. Bradshaw, R. L. Breuning, *Chem. Rev.* 1991, 91, 1721–1785; b) L. F. Lindoy, *Pure Appl. Chem.* 1997, 69, 2179–2186; c) F. Neve, M. Ghedini, M. Francescangeil, *Liq. Cryst.* 1996, 21, 625–630; d) A. J. Blake, A. Taylor, M. Schröder, *J. Chem. Soc., Chem. Commun.* 1993, 1097–1098.
- [8] P. I. Dosa, C. Erben, V. S. Iyer, K. P. C. Vollhardt, I. M. Wasser, J. Am. Chem. Soc. 1999, 121, 10430–10431.

- [9] a) J. E. Davies, L. J. Hope-Weeks, M. J. Mays, P. R. Raithby, Chem. Commun. 2000, 1411–1412; b) L. J. Hope-Weeks, M. J. Mays, A. D. Woods, J. Chem. Soc., Dalton Trans. 2002, 1812– 1819
- [10] R. C. J. Atkinson, L. J. Hope-Weeks, M. J. Mays, G. A. Solan, J. Organomet. Chem. 2007, 692, 2076–2085.
- [11] V. B. Golovko, L. J. Hope-Weeks, M. J. Mays, M. McPartlin, A. M. Sloan, A. D. Woods, New J. Chem. 2004, 28, 527–534.
- [12] a) X.-N. Chen, J. Zhang, S.-L. Wu, Y.-Q. Yin, W.-L. Wang, J. Sun, J. Chem. Soc., Dalton Trans. 1999, 1987–1992; b) C. E. Housecroft, B. F. G. Johnson, M. S. Khan, J. Lewis, P. R. Raithby, M. E. Robson, D. A. Wilkinson, J. Chem. Soc., Dalton Trans. 1992, 3171–3178.
- [13] a) V. B. Golovko, M. J. Mays, A. D. Woods, New J. Chem.
 2002, 26, 1706–1708; b) B. F. G. Johnson, J. Lewis, P. R. Raithby, D. A. Wilkinson, J. Organomet. Chem. 1991, 408, C9–C12; c) E. Champeil, S. M. Draper, J. Chem. Soc., Dalton Trans. 2001, 1440–1447; d) M. B. Nielsen, N. F. Utesch, N. N. P. Moonen, C. Boudon, J.-P. Gisselbrecht, S. Concilio, S. P. Piotto, P. Seiler, P. Gunter, M. Gross, F. Diederich, Chem. Eur. J. 2002, 8, 3601–3613; e) M. I. Bruce, B. W. Skelton, M. E. Smith, A. H. White, Aust. J. Chem. 1999, 52, 431–435; f) Q.-L. Suo, L.-M. Han, Y.-B. Wang, J.-H. Ye, N. Zhu, X.-B. Leng, J. Sun, J. Coord. Chem. 2004, 57, 1591–1601.
- [14] B. J. Rausch, R. Gleiter, F. Rominger, J. Chem. Soc., Dalton Trans. 2002, 2219–2226.
- [15] For use of the CH₂-C≡C bend-back angles as an indicator of strain present in alkyne-/diyne-containing macrocycles see refs. 3b, 9, 10.
- [16] Calculated from a CCDC search, F. H. Allen, O. Kennard, Chem. Design Automation News 1993, 8, 31.
- [17] a) G. F. Mohmand, K. Thiele, M. J. Went, J. Organomet. Chem. 1994, 471, 241–248; b) A. Osella, L. Milone, C. Nervi, M. Ravera, Eur. J. Inorg. Chem. 1998, 1473–1477; c) Amouri, C. Da Silva, B. Malezieux, R. Andres, J. Vaissermann, M. Gruselle, Inorg. Chem. 2000, 39, 5053–5058.
- [18] P. Groth, Acta Chem. Scand. Ser. A 1978, 32, 279–280.
- [19] a) S. C. Bennet, M. A. Philipis, M. J. Went, J. Chem. Soc., Chem. Commun. 1994, 225–239; b) G. G. Melikyan, A. Deravakian, S. Myer, S. Yadegar, K. I. Hardcastle, J. Ciurash, P. J. Toole, J. Organomet. Chem. 1999, 578, 68–75.
- [20] L. J. Hope-Weeks, M. J. Mays, C. Paredes, G. A. Solan, Can. J. Chem. 2007, submitted.
- [21] W. L. F. Armarego, D. D. Perrin, "Purification of Laboratory Chemicals", Butterworth Heinemann, 4th ed., 1996.
- [22] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307–326.
- [23] R. Hooft, COLLECT, Nonius BV, Delft, The Netherlands, 1998.
- [24] R. H. Blessing, Acta Crystallogr., Sect. A 1995, 51, 33-38.
- [25] G. M. Sheldrick, SHELXS97 and SHELXL97, University of Göttingen, Germany, 1997.

Received: January 28, 2007 Published Online: May 10, 2007